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� Integrated modeling description and tools

� Micro-precision interferometer testbed

� MPI integrated model

� MPI testbed measurements

� Validation metric

� Results
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� Integrated modeling refers to modeling of controls, optics, and structures

in a uniform software environment.

� Integrated modeling enables true multi-disciplinary:

{ Analysis

{ Design

{ Optimization

{ Diagnosis

� Integrated modeling is essential for spaceborne interferometry spacecraft

and mission design:

{ Interferometer performance prediction in the presence of mechanical

disturbances (nanometer stability requirements)

{ Requirements ow-down

{ Design trades
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� Integrated Modeling of Optical Systems (IMOS) software package:

{ Matlab toolbox that enables structural and optical modeling

{ Includes functions for model integration

{ Utilizes plethora of Matlab controls and analysis functions

� Controlled Optics Modelling Package (COMP):

{ FORTRAN-compiled, stand-alone program for sophisticated optical

modeling (e.g., di�raction and image synthesis)

{ Maintains compatibility with structural and controls models.

{ Interfaces easily with IMOS.

� IMOS and COMP have been used to evaluate conceptual designs of many

interferometry missions: SIM, SONATA, OSI, POINTS, DLI, SITE, ISIS.

� Novel modeling methodology must be validated in order to have con�-

dence in spacecraft and mission analyses.
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Finite Element Geometry

� Structural model speci�ed in

IMOS.

� Structural model consists of

plate, beam, truss, and rigid

body elements (RBEs).

� 2,577 total dofs: 1,832 in-

dependent w.r.t. multi-point

constraints

� Experimentally determined

element properties consis-

tent with validation of mod-

eling methodology.

� Finite element description (d 2 R2577):

M �d+Kd = Bf f

� Incorporation of multi-point constraints from RBEs (dn 2 R1832):

d=

�
dn

dm

�
= Gdn ) Mnn �dn+Knn dn = Bnf f
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Ray Trace of Optical Prescription w/ FE Geometry
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� Optical prescription speci�es shapes, positions, and orientations of opti-

cal elements.

� Prescription is speci�ed in IMOS relative to the structural model, thereby

easing model integration.

� Analytic di�erential ray trace (COMP) yields linear optical perturbation

model:

yopt = Copt d
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� Obtain eigensolution of FEM, (
;�n):

��+2Z
_�+
2 � = �T
n Bnf f

d = G�n �

with diagonal modal damping, Z, experimentally obtained from the testbed.

� Truncate modes above expected disturbance bandwidth (900 Hz), and

convert to �rst-order model:

x =

�
�k

_�k
�

)

�
_x = Ax+Bf

d = Cd x

with the subscript k referring to the set of 622 kept modes.

� Incorporate linear optical model:

yopt = CoptCd x )

�
_x = Ax+Bf

yopt = Cx

� Resultant model is amenable to analysis with existing Matlab functions.

{ Input: forces at disturbance location

{ Output: stellar optical pathlength di�erence
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JPL Validation Metric 35th IEEE CDC

� Typically, disturbance has broadband PSD, �d(!), and the performance

measure is OPD variation, �opd :

�2opd =

1
�

Z
1

0

jG(|!)j
2

�d(!) d!

� Generally, an accuracy of a factor of two in �opd is desired.

� Use a bandlimited white noise disturbance to characterize the accuracy

of the predicted transfer functions in the frequency range of interest

([!1, !2]):

�2g =

1
�

Z !2

!1

jG(|!)j
2

d!

� Apply the factor of two desirement to the ratio of �g for the predicted

and measured transfer functions:

1
2
�

�gp

�gm

� 2
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x-axis Force Input to Stellar OPD Output
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Measured: σg = 1.14e−06

Predicted: σg = 1.22e−06
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y-axis Force Input to Stellar OPD Output
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Measured: σg = 1.36e−06

Predicted: σg = 1.01e−06
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z-axis Force Input to Stellar OPD Output

10
1

10
2

−200

−180

−160

−140

−120

−100

−80

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
 o

f m
/N

)

Measured: σg = 3.95e−07

Predicted: σg = 6.19e−07
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Disturbance �g

Input 4 - 10 Hz 10 - 100 Hz 100 - 900 Hz 4 - 900 Hz

x-axis measured 997 541 70 1,137

Force predicted 666 1,025 22 1,223

factor 0.67 1.89 0.32 1.08

y-axis measured 1,313 360 69 1,363

Force predicted 864 522 24 1,010

factor 0.66 1.45 0.35 0.74

z-axis measured 185 346 50 395

Force predicted 177 591 47 619

factor 0.95 1.71 0.95 1.57

Note: units are absent since the separate values are not meaningful. It is the

ratio that is signi�cant.
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� Validate disturbance torque transfer functions

{ Torques not yet included because of bad measurement approach:

torques generated by tandem force shakers.

{ Measurement will be improved by fabrication of torque shaker.

� Validate for various CSI vibration attenuation layers

{ Active optics (draft submitted to ACC 97)

{ Active optics and isolation

� Determine, in retrospect, how much parameter identi�cation and/or

model �delity is needed for valid model.

{ Simple beam model of structure.

{ Rod model of truss structure.

{ Structural model before various parameter identi�cation.

� Time domain validation for particular RWA disturbance input.

{ In lab, generate RWA disturbance for several wheel speeds and mea-

sure resultant OPD. Compare with predicted OPD.

{ Combines validation and performance prediction e�orts.
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Supporting Vugraphs
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JPL CSI Layered Technology 35th IEEE CDC
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x-axis "Torque" Input to Stellar OPD Output
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Measured: σg = 4.37e−07

Predicted: σg = 5.04e−07
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y-axis "Torque" Input to Stellar OPD Output
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Measured: σg = 1.70e−06

Predicted: σg = 1.21e−06
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z-axis "Torque" Input to Stellar OPD Output

10
1

10
2

−200

−180

−160

−140

−120

−100

−80

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
 o

f m
/N

m
)

Measured: σg = 1.43e−06

Predicted: σg = 7.20e−07
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Disturbance �g

Input 4 - 10 Hz 10 - 100 Hz 100 - 900 Hz 4 - 900 Hz

x-axis measured 196 201 335 437

Torque predicted 44 471 175 504

factor 0.23 2.34 0.52 1.15

y-axis measured 1,667 201 241 1,697

Torque predicted 1,065 542 199 1,212

factor 0.64 2.70 0.82 0.71

z-axis measured 1,292 499 349 1,429

Torque predicted 219 682 73 720

factor 0.17 1.37 0.21 0.50

Note: units are absent since the separate values are not meaningful. It is the

ratio that is signi�cant.
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